Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38399219

RESUMEN

The repertoire of currently available antiviral drugs spans therapeutic applications against a number of important human pathogens distributed worldwide. These include cases of the pandemic severe acute respiratory coronavirus type 2 (SARS-CoV-2 or COVID-19), human immunodeficiency virus type 1 (HIV-1 or AIDS), and the pregnancy- and posttransplant-relevant human cytomegalovirus (HCMV). In almost all cases, approved therapies are based on direct-acting antivirals (DAAs), but their benefit, particularly in long-term applications, is often limited by the induction of viral drug resistance or side effects. These issues might be addressed by the additional use of host-directed antivirals (HDAs). As a strong input from long-term experiences with cancer therapies, host protein kinases may serve as HDA targets of mechanistically new antiviral drugs. The study demonstrates such a novel antiviral strategy by targeting the major virus-supportive host kinase CDK7. Importantly, this strategy focuses on highly selective, 3D structure-derived CDK7 inhibitors carrying a warhead moiety that mediates covalent target binding. In summary, the main experimental findings of this study are as follows: (1) the in vitro verification of CDK7 inhibition and selectivity that confirms the warhead covalent-binding principle (by CDK-specific kinase assays), (2) the highly pronounced antiviral efficacies of the hit compounds (in cultured cell-based infection models) with half-maximal effective concentrations that reach down to picomolar levels, (3) a particularly strong potency of compounds against strains and reporter-expressing recombinants of HCMV (using infection assays in primary human fibroblasts), (4) additional activity against further herpesviruses such as animal CMVs and VZV, (5) unique mechanistic properties that include an immediate block of HCMV replication directed early (determined by Western blot detection of viral marker proteins), (6) a substantial drug synergism in combination with MBV (measured by a Loewe additivity fixed-dose assay), and (7) a strong sensitivity of clinically relevant HCMV mutants carrying MBV or ganciclovir resistance markers. Combined, the data highlight the huge developmental potential of this host-directed antiviral targeting concept utilizing covalently binding CDK7 inhibitors.

2.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38139252

RESUMEN

The infection of human cytomegalovirus (HCMV) is strongly determined by the host-cell interaction in a way that the efficiency of HCMV lytic replication is dependent on the regulatory interplay between viral and cellular proteins. In particular, the activities of protein kinases, such as cyclin-dependent kinases (CDKs) and the viral CDK ortholog (vCDK/pUL97), play an important role in both viral reproduction and virus-host interaction. Very recently, we reported on the complexes formed between vCDK/pUL97, human cyclin H, and CDK7. Major hallmarks of this interplay are the interaction between cyclin H and vCDK/pUL97, which is consistently detectable across various conditions and host cell types of infection, the decrease or increase in pUL97 kinase activity resulting from cyclin H knock-down or elevated levels, respectively, and significant trans-stimulation of human CDK7 activity by pUL97 in vitro. Due to the fact that even a ternary complex of vCDK/pUL97-cyclin H-CDK7 can be detected by coimmunoprecipitation and visualized by bioinformatic structural modeling, we postulated a putative impact of the respective kinase activities on the patterns of transcription in HCMV-infected cells. Here, we undertook a first vCDK/pUL97-specific transcriptomic analysis, which combined conditions of fully lytic HCMV replication with those under specific vCDK/pUL97 or CDK7 drug-mediated inhibition or transient cyclin H knockout. The novel results were further strengthened using bioinformatic modeling of the involved multi-protein complexes. Our data underline the importance of these kinase activities for the C-terminal domain (CTD) phosphorylation-driven activation of host RNA polymerase in HCMV-infected cells. The impact of the individual experimental conditions on differentially expressed gene profiles is described in detail and discussed.


Asunto(s)
Ciclinas , Infecciones por Herpesviridae , Humanos , Ciclinas/metabolismo , Citomegalovirus/genética , Ciclina H/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Fosforilación
3.
Virus Res ; 335: 199200, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37591314

RESUMEN

Human cytomegalovirus (HCMV) infection is shaped by a tightly regulated interplay between viral and cellular proteins. Distinct kinase activities, such as the viral cyclin-dependent kinase ortholog (vCDK) pUL97 and cellular CDK7 are both crucial for efficient viral replication. Previously, we reported that both kinases, vCDK/pUL97 and CDK7, interact with cyclin H, thereby achieving an enhanced level of kinase activity and overall functionality in viral replication. Here we provide a variety of novel results, as generated on a methodologically extended basis, and present a concept for the codetermination of viral replication efficiency through these kinase activities: (i) cyclin H expression, in various human cell types, is substantially upregulated by strains of HCMV including the clinically relevant HCMV Merlin; (ii) vCDK/pUL97 interacts with human cyclin H in both HCMV-infected and plasmid-transfected cell systems; (iii) a doxycycline-inducible shRNA-dependent knock-down (KD) of cyclin H significantly reduces pUL97 activity (qSox in vitro kinase assay); (iv) accordingly, pUL97 in vitro kinase activity is seen significantly increased upon addition of recombinant cyclin H; (v) as a point of specific importance, human CDK7 activity shows an increase by vCDK/pUL97-mediated trans-stimulation (whereas pUL97 is not stimulated by CDK7); (vi) phosphosite-specific antibodies indicate an upregulated CDK7 phosphorylation upon HCMV infection, as mediated through a pUL97-specific modulatory effect (i.e. shown by pUL97 inhibitor treatment or pUL97-deficient viral mutant); (vii) finally, an efficient KD of cyclin H in primary fibroblasts generally results in an impaired HCMV replication efficiency as measured on protein and genomic levels. These results show evidence for the codetermination of viral replication by vCDK/pUL97, cyclin H and CDK7, thus supporting the specific importance of cyclin H as a central regulatory factor, and suggesting novel targeting options for antiviral drugs.


Asunto(s)
Quinasas Ciclina-Dependientes , Citomegalovirus , Humanos , Antivirales , Ciclina H , Quinasas Ciclina-Dependientes/genética , Citomegalovirus/genética , Fosforilación
4.
Cells ; 11(24)2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36552794

RESUMEN

Herpesviruses replicate their genomes and assemble their capsids in the host cell nucleus. To progress towards morphogenesis in the cytoplasm, herpesviruses evolved the strategy of nuclear egress as a highly regulated process of nucleo-cytoplasmic capsid transition. The process is conserved among α-, ß- and γ-herpesviruses and involves the formation of a core and multicomponent nuclear egress complex (NEC). Core NEC is assembled by the interaction between the nucleoplasmic hook protein, i.e., pUL53 (human cytomegalovirus, HCMV), and the integral membrane-associated groove protein, i.e., pUL50. Our study aimed at the question of whether a panherpesviral NEC scaffold may enable hook-into-groove interaction across herpesviral subfamilies. For this purpose, NEC constructs were generated for members of all three subfamilies and analyzed for multi-ligand interaction using a yeast two-hybrid (Y2H) approach with randomized pUL53 mutagenesis libraries. The screening identified ten library clones displaying cross-viral shared hook-into-groove interaction. Interestingly, a slightly modified Y2H screening strategy provided thirteen further changed-hook pUL53 clones having lost parental pUL50 interaction but gained homolog interaction. In addition, we designed a sequence-predicted hybrid construct based on HCMV and Epstein-Barr virus (EBV) core NEC proteins and identified a cross-viral interaction phenotype. Confirmation was provided by applying protein-protein interaction analyses in human cells, such as coimmunoprecipitation settings, confocal nuclear rim colocalization assays, and HCMV ΔUL53 infection experiments with pUL53-complementing cells. Combined, the study provided the first examples of cross-viral NEC interaction patterns and revealed a higher yield of human cell-confirmed binding clones using a library exchange rate of 3.4 than 2.7. Thus, the study provides improved insights into herpesviral NEC protein binding specificities of core NEC formation. This novel information might be exploited to gain a potential target scaffold for the development of broadly acting NEC-directed inhibitory small molecules.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Humanos , Herpesvirus Humano 4 , Citomegalovirus , Núcleo Celular/metabolismo , Simplexvirus , Mutagénesis
5.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36233116

RESUMEN

The complex host interaction network of human cytomegalovirus (HCMV) involves the regulatory protein kinase pUL97, which represents a viral cyclin-dependent kinase (CDK) ortholog. pUL97 interacts with the three human cyclin types T1, H, and B1, whereby the binding region of cyclin T1 and the pUL97 oligomerization region were both assigned to amino acids 231-280. We further addressed the question of whether HCMVs harboring mutations in ORF-UL97, i.e., short deletions or resistance-conferring point mutations, are affected in the interaction with human cyclins and viral replication. To this end, clinically relevant UL97 drug-resistance-conferring mutants were analyzed by whole-genome sequencing and used for genetic marker transfer experiments. The recombinant HCMVs indicated conservation of pUL97-cyclin interaction, since all viral UL97 point mutants continued to interact with the analyzed cyclin types and exerted wild-type-like replication fitness. In comparison, recombinant HCMVs UL97 Δ231-280 and also the smaller deletion Δ236-275, but not Δ241-270, lost interaction with cyclins T1 and H, showed impaired replication efficiency, and also exhibited reduced kinase activity. Moreover, a cellular knock-out of cyclins B1 or T1 did not alter HCMV replication phenotypes or pUL97 kinase activity, possibly indicating alternative, compensatory pUL97-cyclin interactions. In contrast, however, cyclin H knock-out, similar to virus deletion mutants in the pUL97-cyclin H binding region, exhibited strong defective phenotypes of HCMV replication, as supported by reduced pUL97 kinase activity in a cyclin H-dependent coexpression setting. Thus, cyclin H proved to be a very relevant determinant of pUL97 kinase activity and viral replication efficiency. As a conclusion, the results provide evidence for the functional importance of pUL97-cyclin interaction. High selective pressure on the formation of pUL97-cyclin complexes was identified by the use of clinically relevant mutants.


Asunto(s)
Ciclina H , Citomegalovirus , Proteínas Virales , Aminoácidos/metabolismo , Ciclina H/genética , Ciclina H/metabolismo , Ciclina T/genética , Ciclina T/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Citomegalovirus/fisiología , Marcadores Genéticos , Humanos , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Virales/genética , Replicación Viral/genética
6.
Viruses ; 14(10)2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36298840

RESUMEN

The human cytomegalovirus (HCMV) is a member of the beta-herpesvirus family and inflicts life-long latent infections in its hosts. HCMV has been shown to manipulate and dysregulate many cellular processes. One major interactor with the cellular host is the viral kinase pUL97. The UL97 gene is essential for viral replication, and kinase-deficient mutants of pUL97 display a severe replication defect. Recently, another group established an analog-sensitive version of the pUL97 protein. This mutant kinase can be treated with a non-hydrolysable ATP analog, thereby inhibiting its kinase function. This process is reversible by removing the ATP analog by media change. We introduced this mutant version of the pUL97 protein into the laboratory strain Ad169 of HCMV, BADwt, creating a BAD-UL97-as1 viral mutant. This mutant virus replicated normally in infected cells in the absence of the ATP analog and maintained its ability to phosphorylate its cellular substrates. However, when treated with the ATP analog, BAD-UL97-as1 displayed a defect in the production of intra- and extracellular viral DNA and in the production of viral progeny. Furthermore, in the presence of 3MB-PP1, a well-established substrate of pUL97 was no longer hyperphosphorylated. This effect was detectable as early as 4 h post treatment, which allows for studies on pUL97 without the complication of low viral titers. Nevertheless, we observed off-target effects of 3MB-PP1 on several cellular processes, which should be considered with this approach.


Asunto(s)
Citomegalovirus , ADN Viral , Humanos , Citomegalovirus/fisiología , ADN Viral/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Replicación Viral , Adenosina Trifosfato/metabolismo , Fosforilación
7.
Nat Ecol Evol ; 6(9): 1290-1298, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35879541

RESUMEN

Ecological models predict that the effects of mammalian herbivore exclusion on plant diversity depend on resource availability and plant exposure to ungulate grazing over evolutionary time. Using an experiment replicated in 57 grasslands on six continents, with contrasting evolutionary history of grazing, we tested how resources (mean annual precipitation and soil nutrients) determine herbivore exclusion effects on plant diversity, richness and evenness. Here we show that at sites with a long history of ungulate grazing, herbivore exclusion reduced plant diversity by reducing both richness and evenness and the responses of richness and diversity to herbivore exclusion decreased with mean annual precipitation. At sites with a short history of grazing, the effects of herbivore exclusion were not related to precipitation but differed for native and exotic plant richness. Thus, plant species' evolutionary history of grazing continues to shape the response of the world's grasslands to changing mammalian herbivory.


Asunto(s)
Biodiversidad , Herbivoria , Animales , Mamíferos , Plantas , Suelo
8.
Front Microbiol ; 13: 821030, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35418962

RESUMEN

Grassland ecosystems cover around 37% of the ice-free land surface on Earth and have critical socioeconomic importance globally. As in many terrestrial ecosystems, biological dinitrogen (N2) fixation represents an essential natural source of nitrogen (N). The ability to fix atmospheric N2 is limited to diazotrophs, a diverse guild of bacteria and archaea. To elucidate the abiotic (climatic, edaphic), biotic (vegetation), and spatial factors that govern diazotrophic community composition in global grassland soils, amplicon sequencing of the dinitrogenase reductase gene-nifH-was performed on samples from a replicated standardized nutrient [N, phosphorus (P)] addition experiment in 23 grassland sites spanning four continents. Sites harbored distinct and diverse diazotrophic communities, with most of reads assigned to diazotrophic taxa within the Alphaproteobacteria (e.g., Rhizobiales), Cyanobacteria (e.g., Nostocales), and Deltaproteobacteria (e.g., Desulforomonadales) groups. Likely because of the wide range of climatic and edaphic conditions and spatial distance among sampling sites, only a few of the taxa were present at all sites. The best model describing the variation among soil diazotrophic communities at the OTU level combined climate seasonality (temperature in the wettest quarter and precipitation in the warmest quarter) with edaphic (C:N ratio, soil texture) and vegetation factors (various perennial plant covers). Additionally, spatial variables (geographic distance) correlated with diazotrophic community variation, suggesting an interplay of environmental variables and spatial distance. The diazotrophic communities appeared to be resilient to elevated nutrient levels, as 2-4 years of chronic N and P additions had little effect on the community composition. However, it remains to be seen, whether changes in the community composition occur after exposure to long-term, chronic fertilization regimes.

9.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35269635

RESUMEN

Human cytomegalovirus (HCMV) is a pathogenic human herpesvirus associated with serious, potentially life-threatening symptoms in the immunocompromised or immunonaïve host. The limitations encountered by antiviral therapy options currently available include a narrow panel of accessible targets, the induction of viral drug resistance as well as severe drug dosage-mediated side-effects. Improved drug-targeting strategies to resolve these issues are the focus of our investigations. In particular, pharmaceutical kinase inhibitors (PKIs), either directed to host kinases or directed to the viral protein kinase pUL97, have been considered to overcome these restrictions. Recently, we reported the identification of a synergistic combination of two PKIs directed to host cyclin-dependent kinase 7 (CDK7) and viral CDK ortholog pUL97. Here, we substantiate these findings with the following results: (i) true drug synergy was exhibited by various chemical classes of PKI pairs directed to pUL97 and CDK7; (ii) no putative amplification of cytotoxicity by these drug combinations was observed; (iii) a reduction in drug dosage levels for synergistic combinations was defined on a quantitative basis and compared to monotreatments; (iv) the quantities of target proteins CDK7 and pUL97 expressed in HCMV-infected cells were assessed by confocal imaging, indicating a strong down-modulation of CDK7 levels as a result of synergistic drug treatment; (v) the functional importance of these target kinases, both binding to cyclin H, was illustrated by assessing HCMV replication under the viral genomic deletion of ORF-UL97 or cellular cyclin knock-out; (vi) new combinations of HCMV-specific drug synergy were demonstrated for solely host-directed treatments using PKIs against CDK2, CDK7, CDK8 and/or CDK9 and (vii) a triple PKI combination provided further support for the synergy approach. With these combined findings, this study highlights the potential of therapeutic drug combinations of approved, developmental and preclinical PKIs for expanding future options for anti-HCMV therapy.


Asunto(s)
Quinasas Ciclina-Dependientes , Citomegalovirus , Quinasas Ciclina-Dependientes/metabolismo , Citomegalovirus/genética , Combinación de Medicamentos , Farmacorresistencia Viral , Humanos , Proteínas Virales/metabolismo , Replicación Viral
10.
Glob Chang Biol ; 28(8): 2678-2688, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35038782

RESUMEN

Nutrients and herbivores are well-known drivers of grassland diversity and stability in local communities. However, whether they interact to impact the stability of aboveground biomass and whether these effects depend on spatial scales remain unknown. It is also unclear whether nutrients and herbivores impact stability via different facets of plant diversity including species richness, evenness, and changes in community composition through time and space. We used a replicated experiment adding nutrients and excluding herbivores for 5 years in 34 global grasslands to explore these questions. We found that both nutrient addition and herbivore exclusion alone reduced stability at the larger spatial scale (aggregated local communities; gamma stability), but through different pathways. Nutrient addition reduced gamma stability primarily by increasing changes in local community composition over time, which was mainly driven by species replacement. Herbivore exclusion reduced gamma stability primarily by decreasing asynchronous dynamics among local communities (spatial asynchrony). Their interaction weakly increased gamma stability by increasing spatial asynchrony. Our findings indicate that disentangling the processes operating at different spatial scales may improve conservation and management aiming at maintaining the ability of ecosystems to reliably provide functions and services for humanity.


Asunto(s)
Pradera , Herbivoria , Biodiversidad , Ecosistema , Nutrientes
11.
Ecol Lett ; 24(12): 2713-2725, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34617374

RESUMEN

Fertilisation experiments have demonstrated that nutrient availability is a key determinant of biomass production and carbon sequestration in grasslands. However, the influence of nutrients in explaining spatial variation in grassland biomass production has rarely been assessed. Using a global dataset comprising 72 sites on six continents, we investigated which of 16 soil factors that shape nutrient availability associate most strongly with variation in grassland aboveground biomass. Climate and N deposition were also considered. Based on theory-driven structural equation modelling, we found that soil micronutrients (particularly Zn and Fe) were important predictors of biomass and, together with soil physicochemical properties and C:N, they explained more unique variation (32%) than climate and N deposition (24%). However, the association between micronutrients and biomass was absent in grasslands limited by NP. These results highlight soil properties as key predictors of global grassland biomass production and point to serial co-limitation by NP and micronutrients.


Asunto(s)
Pradera , Suelo , Biomasa , Carbono , Ecosistema , Micronutrientes , Nitrógeno/análisis
12.
Viruses ; 13(7)2021 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-34198986

RESUMEN

The replication of human cytomegalovirus (HCMV) is characterized by a complex network of virus-host interaction. This involves the regulatory viral protein kinase pUL97, which represents a viral cyclin-dependent kinase ortholog (vCDK) combining typical structural and functional features of host CDKs. Notably, pUL97 interacts with the three human cyclin types T1, H and B1, whereby the binding region of cyclin T1 and the region conferring oligomerization of pUL97 were both assigned to amino acids 231-280. Here, we addressed the question of whether recombinant HCMVs harboring deletions in this region were impaired in cyclin interaction, kinase functionality or viral replication. To this end, recombinant HCMVs were generated by traceless BACmid mutagenesis and were phenotypically characterized using a methodological platform based on qPCR, coimmunoprecipitation, in vitro kinase assay (IVKA), Phos-tag Western blot and confocal imaging analysis. Combined data illustrate the following: (i) infection kinetics of all three recombinant HCMVs, i.e., ORF-UL97 ∆231-255, ∆256-280 and ∆231-280, showed impaired replication efficiency compared to the wild type, amongst which the largest deletion exhibited the most pronounced defect; (ii) specifically, this mutant ∆231-280 showed a loss of interaction with cyclin T1, as demonstrated by CoIP and confocal imaging; (iii) IVKA and Phos-tag analyses revealed strongly affected kinase activity for ∆231-280, with strong impairment of both autophosphorylation and substrate phosphorylation, but less pronounced impairments for ∆231-255 and ∆256-280; and (iv) a bioinformatic assessment of the pUL97-cyclin T1 complex led to the refinement of our current binding model. Thus, the results provide initial evidence for the functional importance of the pUL97-cyclin interaction concerning kinase activity and viral replication fitness.


Asunto(s)
Ciclinas/metabolismo , Citomegalovirus/enzimología , Citomegalovirus/genética , Interacciones Huésped-Patógeno , Proteínas Virales/metabolismo , Ciclinas/clasificación , Citomegalovirus/metabolismo , Citomegalovirus/patogenicidad , Fibroblastos/virología , Prepucio/citología , Humanos , Inmunoprecipitación , Masculino , Fosforilación , Unión Proteica , Proteínas Virales/genética , Replicación Viral
13.
Ecol Lett ; 24(10): 2100-2112, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34240557

RESUMEN

The effects of altered nutrient supplies and herbivore density on species diversity vary with spatial scale, because coexistence mechanisms are scale dependent. This scale dependence may alter the shape of the species-area relationship (SAR), which can be described by changes in species richness (S) as a power function of the sample area (A): S = cAz , where c and z are constants. We analysed the effects of experimental manipulations of nutrient supply and herbivore density on species richness across a range of scales (0.01-75 m2 ) at 30 grasslands in 10 countries. We found that nutrient addition reduced the number of species that could co-occur locally, indicated by the SAR intercepts (log c), but did not affect the SAR slopes (z). As a result, proportional species loss due to nutrient enrichment was largely unchanged across sampling scales, whereas total species loss increased over threefold across our range of sampling scales.


Asunto(s)
Biodiversidad , Pradera , Ecosistema , Herbivoria , Nutrientes
14.
Plants (Basel) ; 10(3)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33810119

RESUMEN

Lowland grassy woodlands in Australia's south-east face reductions in native plant diversity because of invasion by non-native plants. We compared the relative abundance and diversity of plant species among sites dominated by the native Kangaroo grass (KG) Themeda triandra with sites co-dominated by the non-native African lovegrass (ALG) Eragrostis curvula and KG. We found significant differences in plant species composition depending on the dominant species. Furthermore, our results revealed differences in several diversity parameters such as a lower species richness and forb diversity on sites co-dominated by ALG and KG. This was the case despite the functional similarity of both ALG and KG-both C4 perennial tussock grasses of a similar height. Therefore, our results highlight the critical function of the native KG in maintaining and enhancing the target plant species composition and diversity within these grassy woodlands. Herbivore grazing potentially impacts on the abundance of the dominant grass and forb species in various ways, but its impact likely differs depending on their evolutionary origin. Therefore, disentangling the role of individual herbivore groups (native-, non-native mammals, and invertebrates) on the plant community composition of the lowland grassy woodlands is essential to find appropriate grazing regimes for ALG management in these ecosystems.

15.
Glob Chang Biol ; 27(11): 2441-2457, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33675118

RESUMEN

Droughts can strongly affect grassland productivity and biodiversity, but responses differ widely. Nutrient availability may be a critical factor explaining this variation, but is often ignored in analyses of drought responses. Here, we used a standardized nutrient addition experiment covering 10 European grasslands to test if full-factorial nitrogen, phosphorus, and potassium addition affected plant community responses to inter-annual variation in drought stress and to the extreme summer drought of 2018 in Europe. We found that nutrient addition amplified detrimental drought effects on community aboveground biomass production. Drought effects also differed between functional groups, with a negative effect on graminoid but not forb biomass production. Our results imply that eutrophication in grasslands, which promotes dominance of drought-sensitive graminoids over forbs, amplifies detrimental drought effects. In terms of climate change adaptation, agricultural management would benefit from taking into account differential drought impacts on fertilized versus unfertilized grasslands, which differ in ecosystem services they provide to society.


Asunto(s)
Sequías , Pradera , Biodiversidad , Biomasa , Ecosistema , Europa (Continente)
16.
Ecol Appl ; 31(3): e02271, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33615604

RESUMEN

It is generally assumed that restoring biodiversity will enhance diversity and ecosystem functioning. However, to date, it has rarely been evaluated whether and how restoration efforts manage to rebuild biodiversity and multiple ecosystem functions (ecosystem multifunctionality) simultaneously. Here, we quantified how three restoration methods of increasing intervention intensity (harvest only < topsoil removal < topsoil removal + propagule addition) affected grassland ecosystem multifunctionality 22 yr after the restoration event. We compared restored with intensively managed and targeted seminatural grasslands based on 13 biotic and abiotic, above- and belowground properties. We found that all three restoration methods improved ecosystem multifunctionality compared to intensively managed grasslands and developed toward the targeted seminatural grasslands. However, whereas higher levels of intervention intensity reached ecosystem multifunctionality of targeted seminatural grasslands after 22 yr, lower intervention missed this target. Moreover, we found that topsoil removal with and without seed addition accelerated the recovery of biotic and aboveground properties, and we found no negative long-term effects on abiotic or belowground properties despite removing the top layer of the soil. We also evaluated which ecosystem properties were the best indicators for restoration success in terms of accuracy and cost efficiency. Overall, we demonstrated that low-cost measures explained relatively more variation of ecosystem multifunctionality compared to high-cost measures. Plant species richness was the most accurate individual property in describing ecosystem multifunctionality, as it accounted for 54% of ecosystem multifunctionality at only 4% of the costs of our comprehensive multifunctionality approach. Plant species richness is the property that typically is used in restoration monitoring by conservation agencies. Vegetation structure, soil carbon storage and water-holding capacity together explained 70% of ecosystem multifunctionality at only twice the costs (8%) of plant species richness, which is, in our opinion, worth considering in future restoration monitoring projects. Hence, our findings provide a guideline for land managers how they could obtain an accurate estimate of aboveground-belowground ecosystem multifunctionality and restoration success in a highly cost-efficient way.


Asunto(s)
Ecosistema , Pradera , Biodiversidad , Plantas , Suelo
18.
Viruses ; 14(1)2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-35062238

RESUMEN

Only a mere fraction of the huge variety of human pathogenic viruses can be targeted by the currently available spectrum of antiviral drugs. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak has highlighted the urgent need for molecules that can be deployed quickly to treat novel, developing or re-emerging viral infections. Sulfated polysaccharides are found on the surfaces of both the susceptible host cells and the majority of human viruses, and thus can play an important role during viral infection. Such polysaccharides widely occurring in natural sources, specifically those converted into sulfated varieties, have already proved to possess a high level and sometimes also broad-spectrum antiviral activity. This antiviral potency can be determined through multifold molecular pathways, which in many cases have low profiles of cytotoxicity. Consequently, several new polysaccharide-derived drugs are currently being investigated in clinical settings. We reviewed the present status of research on sulfated polysaccharide-based antiviral agents, their structural characteristics, structure-activity relationships, and the potential of clinical application. Furthermore, the molecular mechanisms of sulfated polysaccharides involved in viral infection or in antiviral activity, respectively, are discussed, together with a focus on the emerging methodology contributing to polysaccharide-based drug development.


Asunto(s)
Antivirales/farmacología , Productos Biológicos/farmacología , COVID-19/epidemiología , Polisacáridos/farmacología , Virus/efectos de los fármacos , Antivirales/síntesis química , Antivirales/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Heparina/síntesis química , Heparina/química , Heparina/farmacología , Humanos , Polisacáridos/química , SARS-CoV-2/efectos de los fármacos , Relación Estructura-Actividad , Sulfatos/química , Sulfatos/farmacología , Virosis/tratamiento farmacológico , Internalización del Virus/efectos de los fármacos , Virus/patogenicidad , Tratamiento Farmacológico de COVID-19
19.
Nat Commun ; 11(1): 5375, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097736

RESUMEN

Eutrophication is a widespread environmental change that usually reduces the stabilizing effect of plant diversity on productivity in local communities. Whether this effect is scale dependent remains to be elucidated. Here, we determine the relationship between plant diversity and temporal stability of productivity for 243 plant communities from 42 grasslands across the globe and quantify the effect of chronic fertilization on these relationships. Unfertilized local communities with more plant species exhibit greater asynchronous dynamics among species in response to natural environmental fluctuations, resulting in greater local stability (alpha stability). Moreover, neighborhood communities that have greater spatial variation in plant species composition within sites (higher beta diversity) have greater spatial asynchrony of productivity among communities, resulting in greater stability at the larger scale (gamma stability). Importantly, fertilization consistently weakens the contribution of plant diversity to both of these stabilizing mechanisms, thus diminishing the positive effect of biodiversity on stability at differing spatial scales. Our findings suggest that preserving grassland functional stability requires conservation of plant diversity within and among ecological communities.


Asunto(s)
Biota , Ecosistema , Eutrofización , Pradera , Biodiversidad , Biomasa , Fertilización , Modelos Biológicos , Plantas
20.
Int J Mol Sci ; 21(15)2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32759737

RESUMEN

Human cytomegalovirus (HCMV) is a major human pathogen associated with severe pathology. Current options of antiviral therapy only partly satisfy the needs of a well-tolerated long-term treatment/prophylaxis free from drug-induced viral resistance. Recently, we reported the strong antiviral properties in vitro and in vivo of the broad-spectrum anti-infective drug artesunate and its optimized derivatives. NF-κB signaling was described as a targeting mechanism and additional target proteins have recently been identified. Here, we analyzed the autofluorescent hybrid compound BG95, which could be utilized for intracellular visualization by confocal imaging and a tracking analysis in virus-infected primary human fibroblasts. As an important finding, BG95 accumulated in mitochondria visualized by anti-prohibitin and MitoTracker staining, and induced statistically significant changes of mitochondrial morphology, distinct from those induced by HCMV infection. Notably, mitochondrial membrane potential was found substantially reduced by BG95, an effect apparently counteracting efficient HCMV replication, which requires active mitochondria and upregulated energy levels. This finding was consistent with binding properties of artesunate-like compounds to mitochondrial proteins and thereby suggested a new mechanistic aspect. Combined, the present study underlines an important role of mitochondria in the multifaceted, host-directed antiviral mechanism of this drug class, postulating a new mitochondria-specific mode of protein targeting.


Asunto(s)
Antivirales/farmacología , Artemisininas/farmacología , Infecciones por Citomegalovirus/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Antivirales/química , Artemisininas/química , Artesunato/análogos & derivados , Artesunato/farmacología , Citomegalovirus/efectos de los fármacos , Citomegalovirus/patogenicidad , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/virología , Farmacorresistencia Viral/efectos de los fármacos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacología , Humanos , Mitocondrias/genética , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...